Mencius: A Chinese Named Entity Recognizer Using Hybrid Model

نویسندگان

  • Richard Tzong-Han Tsai
  • Shih-Hung Wu
  • Wen-Lian Hsu
چکیده

This paper presents a maximum entropy based Chinese named entity recognizer (NER): Mencius. It aims to address Chinese NER problems by combining the advantages of rule-based and machine learning (ML) based NER systems. Rule-based NER systems can explicitly encode human comprehension and can be tuned conveniently, while ML-based systems are robust, portable and inexpensive to develop. Our hybrid system incorporates a rule-based knowledge representation and template-matching tool, InfoMap [1], into a maximum entropy (ME) framework. Named entities are represented in InfoMap as templates, which serve as ME features in Mencius. These features are edited manually and their weights are estimated by the ME framework according to the training data. To avoid the errors caused by word segmentation, we model the NER problem as a character-based tagging problem. In our experiments, Mencius outperforms both pure rule-based and pure ME-based NER systems. The F-Measures of person names (PER), location names (LOC) and organization names (ORG) in the experiment are respectively 92.4%, 73.7% and 75.3%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mencius: A Chinese Named Entity Recognizer Using the Maximum Entropy-based Hybrid Model

This paper presents a Chinese named entity recognizer (NER): Mencius. It aims to address Chinese NER problems by combining the advantages of rule-based and machine learning (ML) based NER systems. Rule-based NER systems can explicitly encode human comprehension and can be tuned conveniently, while ML-based systems are robust, portable and inexpensive to develop. Our hybrid system incorporates a...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Hybrid Models for Chinese Named Entity Recognition

This paper describes a hybrid model and the corresponding algorithm combining support vector machines (SVMs) with statistical methods to improve the performance of SVMs for the task of Chinese Named Entity Recognition (NER). In this algorithm, a threshold of the distance from the test sample to the hyperplane of SVMs in feature space is used to separate SVMs region and statistical method region...

متن کامل

Multi-Language Named-Entity Recognition System based on HMM

We introduce a multi-language named-entity recognition system based on HMM. Japanese, Chinese, Korean and English versions have already been implemented. In principle, it can analyze any other language if we have training data of the target language. This system has a common analytical engine and it can handle any language simply by changing the lexical analysis rules and statistical language m...

متن کامل

A Novel Approach to Conditional Random Field-based Named Entity Recognition using Persian Specific Features

Named Entity Recognition is an information extraction technique that identifies name entities in a text. Three popular methods have been conventionally used namely: rule-based, machine-learning-based and hybrid of them to extract named entities from a text. Machine-learning-based methods have good performance in the Persian language if they are trained with good features. To get good performanc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003